Find Parabola Equation from 2 Points Calculator (Vertex & Point)
Parabola Equation Calculator
This calculator helps you find the equation of a parabola given its vertex and one other point it passes through.
Results:
Parabola Sketch
What is a Find Parabola Equation from 2 Points Calculator?
A "find parabola equation from 2 points calculator" is a tool designed to determine the equation of a parabola when you know its vertex and one other point it passes through. Although the name suggests two general points, a unique parabola in standard form (with a vertical or horizontal axis of symmetry) is defined by its vertex (h, k) and one other point (x, y), along with its orientation (vertical or horizontal).
If the parabola has a vertical axis, its equation is y = a(x-h)² + k. If it has a horizontal axis, its equation is x = a(y-k)² + h. Our calculator uses the coordinates of the vertex and the other point to find the value of 'a', which determines the parabola's width and direction of opening, and then presents the full equation along with the focus and directrix.
This calculator is useful for students learning algebra and analytic geometry, engineers, physicists, and anyone needing to model parabolic shapes based on key points. It simplifies the process of finding the equation, focus, and directrix.
A common misconception is that any two points can define a unique parabola. In reality, infinite parabolas can pass through two general points. However, if one of those points is the vertex, and the orientation is known, then the parabola is uniquely defined.
Find Parabola Equation Formula and Mathematical Explanation
The standard equation of a parabola depends on its orientation:
1. Vertical Parabola
If the parabola has a vertical axis of symmetry, its vertex is at (h, k), and its equation is:
y = a(x - h)² + k
To find 'a', we use the coordinates of the other point (x₁, y₁) that the parabola passes through:
y₁ = a(x₁ - h)² + k
Solving for 'a':
a = (y₁ - k) / (x₁ - h)² (provided x₁ ≠ h)
Once 'a' is known, we have the full equation. The focus of a vertical parabola is at (h, k + 1/(4a)), and the directrix is the line y = k - 1/(4a).
2. Horizontal Parabola
If the parabola has a horizontal axis of symmetry, its vertex is at (h, k), and its equation is:
x = a(y - k)² + h
Using the other point (x₁, y₁):
x₁ = a(y₁ - k)² + h
Solving for 'a':
a = (x₁ - h) / (y₁ - k)² (provided y₁ ≠ k)
The focus of a horizontal parabola is at (h + 1/(4a), k), and the directrix is the line x = h - 1/(4a).
Our find parabola equation from 2 points calculator uses these formulas based on your selected orientation.
Variables Table
| Variable | Meaning | Unit | Typical Range |
|---|---|---|---|
| (h, k) | Coordinates of the vertex | Length units | Any real numbers |
| (x, y) or (x₁, y₁) | Coordinates of the other point | Length units | Any real numbers |
| a | Coefficient determining width and direction | Inverse length units | Any non-zero real number |
| Focus | A fixed point used to define the parabola | Coordinates | Coordinates |
| Directrix | A fixed line used to define the parabola | Equation of a line | Equation |
Practical Examples (Real-World Use Cases)
Example 1: Vertical Parabola
Suppose the vertex of a parabolic satellite dish (opening upwards) is at (0, 0), and the dish passes through the point (2, 1). We want to find its equation.
- Vertex (h, k) = (0, 0)
- Other Point (x₁, y₁) = (2, 1)
- Orientation: Vertical (y = a(x-h)²+k)
Using the formula a = (y₁ – k) / (x₁ – h)²:
a = (1 – 0) / (2 – 0)² = 1 / 4 = 0.25
The equation is y = 0.25(x – 0)² + 0, so y = 0.25x².
Focus: (0, 0 + 1/(4*0.25)) = (0, 1)
Directrix: y = 0 – 1/(4*0.25) = -1
Example 2: Horizontal Parabola
A parabolic reflector has its vertex at (1, 2) and opens to the right, passing through (3, 4).
- Vertex (h, k) = (1, 2)
- Other Point (x₁, y₁) = (3, 4)
- Orientation: Horizontal (x = a(y-k)²+h)
Using the formula a = (x₁ – h) / (y₁ – k)²:
a = (3 – 1) / (4 – 2)² = 2 / 4 = 0.5
The equation is x = 0.5(y – 2)² + 1.
Focus: (1 + 1/(4*0.5), 2) = (1 + 0.5, 2) = (1.5, 2)
Directrix: x = 1 – 1/(4*0.5) = 1 – 0.5 = 0.5
Using the find parabola equation from 2 points calculator above with these inputs will give the same results.
How to Use This Find Parabola Equation from 2 Points Calculator
- Enter Vertex Coordinates: Input the x-coordinate (h) and y-coordinate (k) of the parabola's vertex.
- Enter Other Point Coordinates: Input the x-coordinate (x) and y-coordinate (y) of the other point the parabola passes through.
- Select Orientation: Choose whether the parabola has a "Vertical" (y = a(x-h)²+k) or "Horizontal" (x = a(y-k)²+h) axis of symmetry.
- Calculate: Click the "Calculate" button (or results update automatically as you type).
- Read Results: The calculator will display:
- The calculated value of 'a'.
- The full equation of the parabola.
- The coordinates of the focus.
- The equation of the directrix.
- Interpret Chart: The chart provides a visual representation of your parabola, vertex, and the other point.
- Reset or Copy: Use "Reset" to clear inputs or "Copy Results" to copy the findings.
This find parabola equation from 2 points calculator streamlines finding the equation when you know the vertex and one other point.
Key Factors That Affect Parabola Equation Results
Several factors influence the equation and shape of the parabola:
- Vertex Coordinates (h, k): The vertex is the turning point and directly appears in the standard equations. Changing it shifts the parabola.
- Other Point Coordinates (x₁, y₁): This point, along with the vertex, determines the value of 'a', which controls the width and direction of the parabola.
- Orientation (Vertical/Horizontal): This fundamentally changes the form of the equation and which variable is squared.
- Value of 'a':
- If |a| is large, the parabola is narrow.
- If |a| is small (close to 0), the parabola is wide.
- If a > 0, the vertical parabola opens upwards, and the horizontal one opens to the right.
- If a < 0, the vertical parabola opens downwards, and the horizontal one opens to the left.
- Distance between Vertex and Other Point: The relative position of the other point from the vertex directly influences 'a'.
- Condition x₁ ≠ h (for vertical) or y₁ ≠ k (for horizontal): If the other point lies on the axis of symmetry but is not the vertex, 'a' becomes undefined in the standard forms used here, indicating a degenerate case or that the point doesn't fit the chosen orientation with a non-zero 'a'. Our find parabola equation from 2 points calculator will flag this.
Frequently Asked Questions (FAQ)
Related Tools and Internal Resources
- Quadratic Equation Solver: Solve equations of the form ax² + bx + c = 0.
- Distance Formula Calculator: Calculate the distance between two points.
- Midpoint Calculator: Find the midpoint between two points.
- Vertex Calculator: Find the vertex of a parabola given its equation in standard or general form.
- Axis of Symmetry Calculator: Find the axis of symmetry for a parabola.
- Graphing Calculator: Plot various mathematical functions, including parabolas.
Explore these tools for more calculations related to quadratic equations and coordinate geometry.